A Tutorial on Spatiotemporal Causal Inference

October 29. 2024 | STCausal Workshop @ ACM SIGSPATIAL 2024

Sahara Ali, Assistant Professor – Data Science University of North Texas

Jianwu Wang,
Professor – Information Systems
University of Maryland, Baltimore County

Agenda

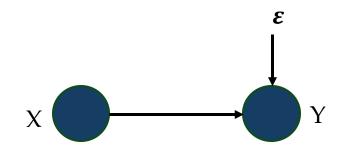
Key Concepts of Causal Inference on IID data

Causal Inference on Time-series on Spatiotemporal data

Causal Inference on Spatiotemporal Data

Causal Effect Estimation (Causal Inference)

The process of inferring the influence (causal effect) of one event, policy or treatment (a cause X) on another event, state, or outcome (an effect Y).

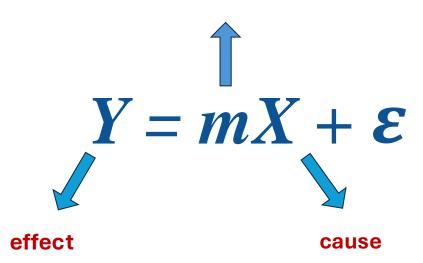


$$Y = mX + \varepsilon$$

Causal Effect Estimation (Causal Inference)

The process of inferring the influence (causal effect) of one event, policy or treatment (a cause X) on another event, state, or outcome (an effect Y).

co-efficient of causality?



Potential Outcome Framework

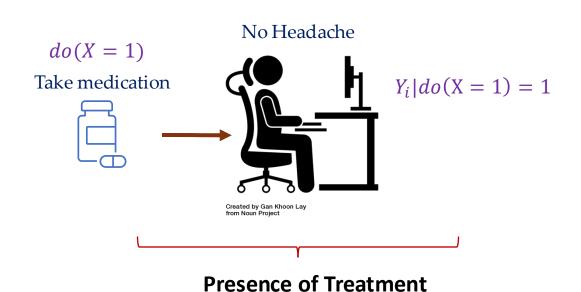
For a hypothetical intervention, the causal effect for an individual *i* is the difference between the outcomes that would be observed for that individual **with** versus **without** the treatment or **intervention**.

$$Y_i = \begin{cases} Y_{i1} \ if \ X = 1 \\ Y_{i0} \ if \ X = 0 \end{cases}$$
 When we intervene on X

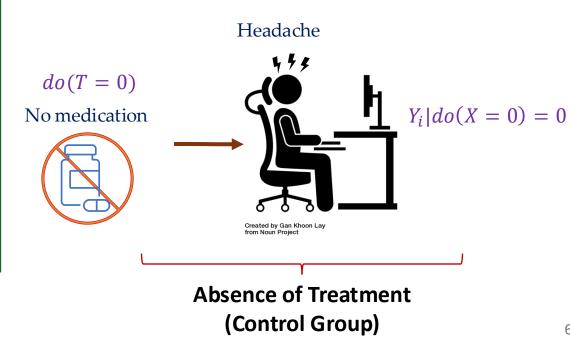
Treatment Effect =
$$Y_{i1} - Y_{i0}$$

Presence of Treatment Treatment Treatment

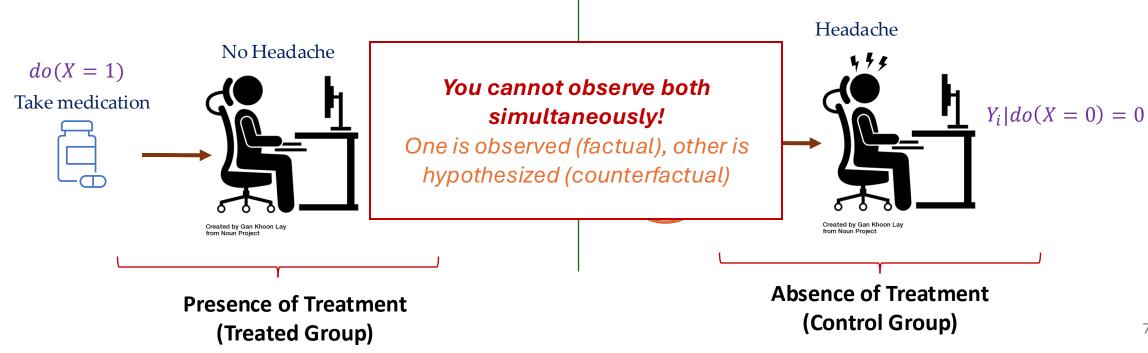
Potential Outcome Framework



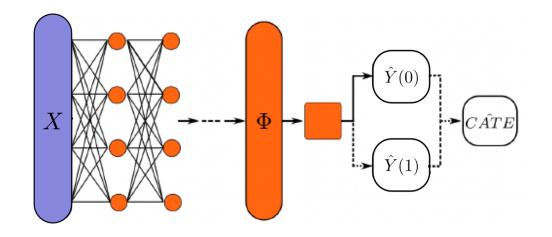
(Treated Group)

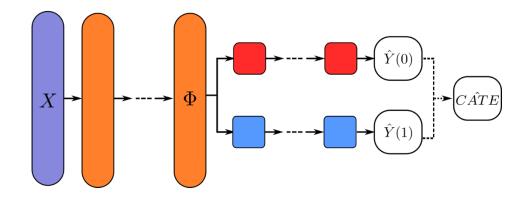


Potential Outcome Framework



Machine Learning for Causal Inference





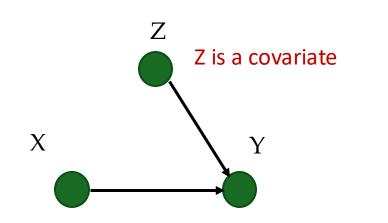
S(ingle)-learner¹

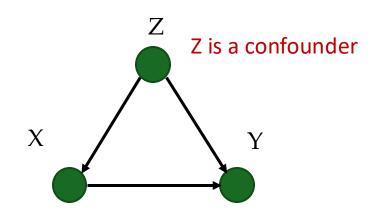
T-learner¹ (TARNet, DragonNet, etc.)

^{1.} Koch, Bernard J., et al. "A Primer on Deep Learning for Causal Inference." Sociological Methods & Research (2024): 00491241241234866.

Causal Inference - Confounding

We cannot assume that our Y is only dependent on X





$$ATE = Y_{i1}(X = 1, Z) - Y_{i0}(X = 0, Z)$$

Demo Time!

A simple example of causal inference using Machine Learning

tinyurl.com/stcausal24

Time-Series Causal Inference

The process of inferring the influence (causal effect) of one event, policy or treatment (a cause X) on another event, state, or outcome (an effect Y) at current timestep t.

$$ATE = Y_{1t}(X_t = 1, Z_t) - Y_{0t}(X_t = 0, Z_t)$$

Time-Series Causal Inference

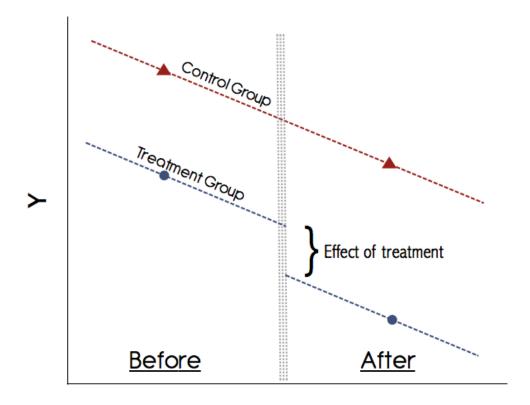
The process of inferring the influence (causal effect) of one event, policy or treatment (a cause X) on another event, state, or outcome (an effect Y) at current timestep t or future timestep t+l.

$$Y_{t+l}(\hat{X} = \hat{x}_t) = f(Z_t, \hat{x}_t) \qquad Y_{t+l}(X = x_t) = f(Z_t, x_t)$$
$$LATE(l) = \frac{1}{N} \sum_{t=1}^{N} E[Y_{t+l}(\hat{X}_t) - Y_{t+l}(X_t)]$$

LATE is the lagged average treatment effect

Time-Invariant Causal Inference

The effect of time-invariant intervention is measured based on the difference in the outcomes before and after the intervention takes place.



Time-Invariant Causal Inference

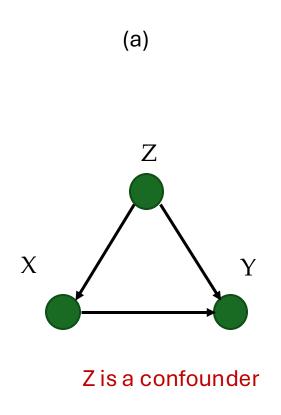
- Intervention happens once.
- The treatment does not vary with time!
- Methods: Difference-in-Difference, Causal Impact, Causal ARIMA, etc
- Causal Effect = The difference between the observed post-intervention data and the counterfactual prediction

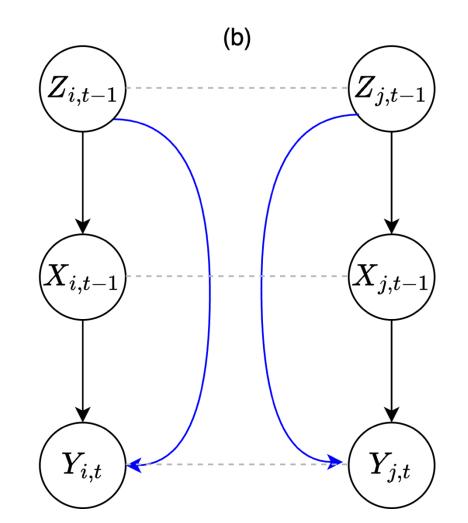
Time-Varying Causal Inference

- When the treatment or intervention, the outcome, and potentially the covariates, change over time.
- This process uncovers how a changing treatment influences the outcome of interest.

- Methods: Marginal Structural Models, Convergent Cross Mapping, Deep Learning based methods, etc
- Causal Effect = The difference between the counterfactual and factual predictions

Time-Varying Causal Inference – Confounding





Bias

Outcomes!

Time-Varying Causal Inference – Balancing

Generalized Propensity Score (Rubin's G-Methods)

$$Prob(X_t|X_{t-1},Z_t)$$

Inverse Probability of Treatment Weight (Robins, 1986)

$$IPTW = \prod_{t=1}^{k} \frac{1}{f(\bar{X}|\bar{Z})}$$

where,
$$\bar{X} = (X_1, X_2, ..., X_t)$$
 $\bar{Z} = (Z_1, Z_2, ..., Z_t)$

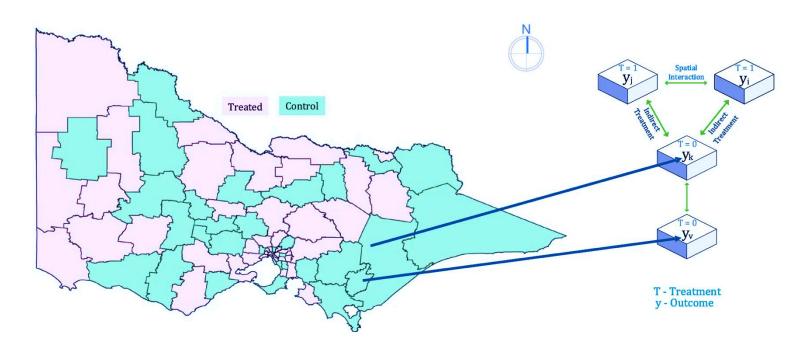
Demo Time!

Causal inference using Time-varying and Time-invariants Methods

tinyurl.com/stcausal24

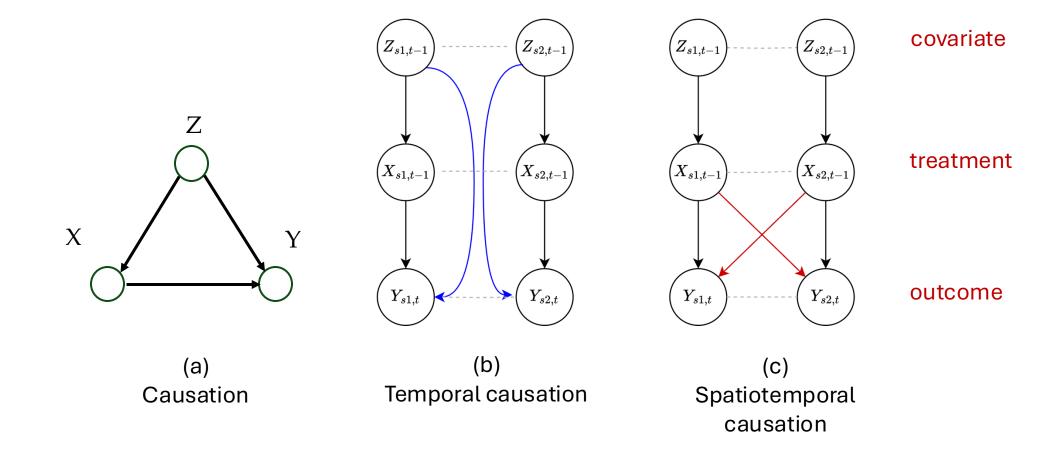
Spatiotemporal Causal Inference

The process of inferring the influence (causal effect) of a policy or treatment (X) applied on a specific region at current timestep t, on another event or outcome (Y) on the same or neighboring regions at current timestep t or future timestep t+l.



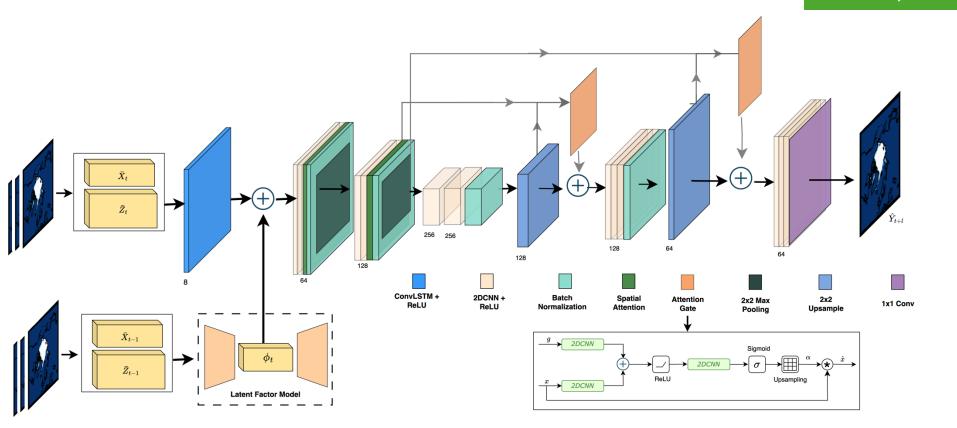
Source: (Geographical Analysis, 2021)

From Temporal to Spatiotemporal Causal Inference



Deep Learning for Spatiotemporal Causal Inference

Ali et.al , ECML 2024



STCINet – UNet based deep learning model to infer causal inference on space-time varying data

Demo Time!

Causal Inference on Spatiotemporal Data

tinyurl.com/stcausal24

