
Rail transit delay forecasting with Causal Machine Learning
Nishtha Srivastava

Sardar Vallabhbhai National Institute
of Technology

Surat, Gujarat, India
d20co005@coed.svnit.ac.in

Bhavesh N. Gohil
Sardar Vallabhbhai National Institute

of Technology
Surat, Gujarat, India
bng@coed.svnit.ac.in

Suprio Ray
University of New Brunswick

Fredericton, Canada
sray@unb.ca

Abstract
The rapid evolution of public transport and advances in analytics
have significantly transformed the way we enhance transit ser-
vices. Rail transit systems, celebrated for their comfort, speed, and
minimal environmental impact, face ongoing challenges due to
persistent delays. We introduce a novel approach that integrates
causal inference with machine learning techniques to predict rail
transit delays and uncover key causal factors. Utilizing the New
Jersey Transit dataset, we apply uplift modeling and causal infer-
ence methods to enhance delay predictions. The study employs
Individual Treatment Effect (ITE) and Average Treatment Effect
(ATE) metrics to interpret and validate the predictions. Our research
offers a comprehensive understanding of rail transit delays and pro-
vides actionable insights for policymakers, urban planners, and
public health officials. By advancing causal analytical techniques,
this work aims to improve transit reliability and efficiency on a
global scale.

CCS Concepts
• Computing methodologies→ Feature selection;Machine
learning;Artificial intelligence; •Applied computing→Trans-
portation.
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1 Introduction
Due to increased demand and capacity utilization over recent decades,
many rail transit systems are now operating at near maximum ca-
pacity. This high utilization heightens the risk of delays propagating
from one train to others, causing extended disruptions throughout
the network. Such delays can severely impact the efficiency and
attractiveness of rail services. According to Spanninger et al. [21],
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train transit delay prediction methods can be divided into event-
driven and data-driven categories. Event-driven models rely on a
structured sequence of train events, such as departures and arrivals,
to predict delays, using techniques like systems of equations [11],
Bayesian Networks [4], Timed Event Graphs [9], Markov Chains
[20], and Petri Nets [12, 28]. In contrast, data-driven methods do not
focus on explicit train-event dependencies or traffic flow dynamics.

Historically, predicting public transit delays has been challeng-
ing due to limited access to real-time data and the constraints of
traditional analytical methods. Recent advancements have dramat-
ically improved both data collection and analysis. Many transit
agencies now use GPS-based tracking systems to provide real-time
updates on vehicle positions and arrival times. Additionally, the
General Transit Feed Specification (GTFS) standard has facilitated
the dissemination of transit updates. Despite these improvements,
accurately predicting arrival times remains a challenge. Machine
learning (ML) has shown promise in addressing these issues, often
outperforming traditional methods [14, 22]. The effectiveness of
ML models depends significantly on the quality of the data and
features used. Identifying key features that affect transit delays is
crucial for enhancing prediction accuracy.

This paper examines rail transit systems, which are favored for
their comfort, speed, and low emissions but are often affected by
delays, particularly during peak periods. Inaccurate delay forecasts
can lead passengers to choose private cars over rail transport. Re-
search on rail transit delays is less developed compared to bus
systems [10]. Our objective is to improve rail transit delay predic-
tions using causal ML techniques. The model proposed in this study
is based on supervised learning. This approach typically involves
training a model on a labeled dataset, where both the input fea-
tures (such as train schedules, stop sequences, and historical delay
data) and the corresponding target variable (the actual delays) are
known.

The key contributions of this paper are:
• Applying causal inference and ML techniques to forecast rail
transit delays.
• Using ITE and ATE to identify significant factors affecting
rail transit delays.
• Re-training ML models with identified key features and com-
paring their performance to the original models.

The paper is organized as follows. Section 2 reviews relevant lit-
erature on causal inference and ML. Section 3 offers a detailed
review of delay prediction methods, followed by problem defini-
tion in Section 4. Section 5 describes the datasets used, Section
6 presents the proposed methodology, and Section 7 outlines the
experimental setup. Results and analysis are discussed in Section 8,
with the paper concluding in Section 9, summarizing the findings
and contributions.
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2 Background
2.1 Causal inference
Causal Machine Learning (ML) provides methods for estimating
causal effects, such as the ATE [16] and the ITE [1], using both
experimental and observational data. These techniques measure the
impact of an intervention𝑊 on an outcome𝑌 , considering observed
features 𝑋 of individuals, without requiring strict assumptions
about the model’s structure. An example of a causal graph that
illustrates these concepts is shown in Figure 1.

Figure 1: Example of a causal graph [25]

where,
• Treatment effect (T): The change in the outcome variable
resulting from a modification in the treatment variable.
• Covariates (W): Factors that influence both the treatment
and the outcome.
• Outcome (Y): The resulting variable or output.

By considering each feature individually as a treatment variable,
we can calculate two types of treatment effects:

(1) Average Treatment Effect (ATE)
(2) Individual Treatment Effect (ITE)

2.2 Individual Treatment Effect (ITE)
ITE [23] for a specific feature represents the effect of the treatment
across all instances of that feature. As shown in Equation 1, ITE is
defined as the change of 𝑌0 and 𝑌1, while keeping the covariates 𝑋
unchanged (i.e., condition on those covariates). For an instance 𝑖
with covariates 𝑋𝑖 , its corresponding ITE is

𝐼𝑇𝐸 (𝑋𝑖 ) = E[𝑌1 |𝑋𝑖 ] − E[𝑌0 |𝑋𝑖 ] (1)

where:
• 𝑋𝑖 : represents the covariates or features for the specific in-
stance 𝑖 . Covariates are the characteristics or attributes of
the individual or unit being considered. They can include
demographic information (like age, gender, income), histori-
cal data, or any other relevant factors that might influence
the outcome. The covariates 𝑋𝑖 help control for external
factors that could affect the outcome. By conditioning on
these covariates, the analysis aims to isolate the effect of the
treatment from other influences.
• 𝑌1: denotes the outcome variable when the individual re-
ceives the treatment. For example, if the treatment is a new
medication, 𝑌1 would represent the health outcome (such
as reduced symptoms or improved recovery time) for the

individual if they take that medication. 𝑌1 is crucial for de-
termining the positive effects of the treatment. It represents
the scenario where the treatment is applied, allowing for an
evaluation of its effectiveness.
• 𝑌0: represents the outcome variable when the individual
does not receive the treatment. Using the medication exam-
ple again, 𝑌0 would represent the health outcome for the
individual if they do not take the medication. 𝑌0 is essen-
tial for understanding what happens without the treatment.
Comparing 𝑌1 and 𝑌0 provides insights into the impact of
the treatment.
• E[𝑌1 |𝑋𝑖 ]: This term represents the expected outcome 𝑌1 (the
outcome if the individual receives the treatment) given the
individual’s covariates 𝑋𝑖 . It answers the question: "What
is the predicted outcome if the treatment is applied to this
specific individual?"
• E[𝑌0 |𝑋𝑖 ] : This term represents the expected outcome𝑌0 (the
outcome if the individual does not receive the treatment)
given the same covariates 𝑋𝑖 . It answers the question: "What
is the predicted outcome if the treatment is not applied to
this specific individual?"

2.3 Average Treatment Effect (ATE)
Since only a single potential outcome can be observed, estimating
the effect at the individual level is exceedingly difficult. A more
practical approach is to assess the treatment effect at the average
level [23]. As shown in Equation 2, ATE for a given feature is
determined by averaging the ITE values associated with that feature
[23]. The feature with the highest ATE is likely to have the most
significant causal impact for the specified treatment. The ATE for a
feature can be computed as follows:

𝐴𝑇𝐸 = E[𝑌1 − 𝑌0] (2)

where:
• ATE(𝑥) denotes the Average Treatment Effect for the feature
𝑥 .
• E: The expected value operator. It indicates that we are cal-
culating the average of the treatment effect across all indi-
viduals in the population.
• 𝑌1: The potential outcome when the individual receives
the treatment. This represents the outcome of interest (e.g.,
health improvement, performance increase) if the treatment
is applied.
• 𝑌0: The potential outcome when the individual does not
receive the treatment. This represents what would happen
without the treatment.

2.4 Uplift tree classifier
An uplift tree classifier is a decision tree designed to predict the in-
cremental impact of an intervention or treatment, such as whether
showing an advertisement leads to higher conversions compared
to no advertisement. Unlike traditional decision trees, uplift trees
focus on maximizing the difference in outcomes between treat-
ment and control groups. It helps to determine the causal effects
of a treatment by comparing the potential responses of individu-
als if they receive the treatment versus, if they do not [19]. The
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UpliftTreeClassifier is a component of the CausalML Python li-
brary. In our approach, UpliftTreeClassifier is used to identify
the causal impact of various factors (such as, weather conditions,
operational changes, or train schedules) on transit delays. The clas-
sifier can differentiate between conditions that genuinely cause
delays and those that are merely associated with them [13].

UpliftTreeClassifier supports the estimation of ITE, which
evaluates the effect of a treatment on specific instances, and ATE,
which determines the overall treatment impact across the dataset.
Utilizing these metrics allows for a more detailed analysis of the
influence of various features on treatment outcomes, improving
the accuracy of causal conclusions. The uplift tree classifier tries to
determine the best split at each node by maximizing the difference
in outcomes between the treatment and control groups. Here’s the
mathematical formulation [18]:

(1) Divergence at a node: At each node of the tree, divergence
between the treatment and control group outcome is cal-
culated. Two possible measures of divergence are Kullback-
Leibler (KL) Divergence and Squared Euclidean Distance.
The KL divergence between treatment and control distribu-
tions at node 𝑗 is defined as:

𝐷KL (𝑃𝑇 (𝑌 ), 𝑃𝐶 (𝑌 )) =
∑︁
𝑖

𝑃𝑇 (𝑌𝑖 ) log
(
𝑃𝑇 (𝑌𝑖 )
𝑃𝐶 (𝑌𝑖 )

)
(3)

where 𝑃𝑇 (𝑌𝑖 ) and 𝑃𝐶 (𝑌𝑖 ) represent the probabilities of out-
come 𝑖 in the treatment and control groups, respectively.

(2) Conditional divergence after a split:When a node is split
into children nodes, the conditional divergence is calculated
for each child node 𝑎. The conditional divergence is defined
as:

𝐷 (𝑇 |𝐴) =
∑︁
𝑎

𝑁 (𝑎)
𝑁

𝐷 (𝑃𝑇 (𝑌 |𝑎), 𝑃𝐶 (𝑌 |𝑎)) (4)

where𝑁 (𝑎) is the number of instances of child node 𝑎, and𝐷
is the divergence measure (either KL divergence or squared
Euclidean distance).

(3) Maximizing Gain: To find the optimal split, the gain in
divergence is maximized, which is , defined as the difference
between the divergence at the parent node and the weighted
sum of divergences at the children nodes:

Gain = 𝐷KL (𝑃𝑇 (𝑌 ), 𝑃𝐶 (𝑌 )) − 𝐷 (𝑇 |𝐴) (5)

The split that maximizes this gain is chosen at each node of
the tree.

These equations allow the uplift tree classifier to identify splits that
best separate the treatment and control groups, highlighting where
the intervention has the most significant impact.

3 Related work
Forecasting of train delays has seen considerable development
through various methodologies, ranging from stochastic models to
advanced machine learning techniques. This review provides an
overview of significant contributions in this area.

3.1 Stochastic models for delay prediction
Carey and Kwiecinski’s [2] stochastic approach for predicting car-
ryover delays was one of the first attempts to model the knock-on
effects of train delays. Their method laid the foundation for later
works like Yuan J’s enhanced probability analysis [26], which im-
proved the accuracy of delay forecasts by incorporating blocking-
time theory. These models, while effective in specific scenarios,
often lack the flexibility to handle real-time data and dynamic net-
work changes.

3.2 Advanced machine learning in rail delay
forecasting

In the evolution towards more dynamic methods, Peters et al. [17]
introduced an intelligent forecasting tool leveraging real-time de-
lays, and Yaghini [24] explored artificial neural networks (ANNs)
for passenger train delay prediction in Iran. Both studies underscore
the value of machine learning, though their focus was primarily
on prediction rather than understanding the causal relationships
between variables.

3.3 Limitations with exisiting works
While several statistical and machine learning approaches have
been employed [6, 7, 15], many existing methods fail to offer event-
level insights necessary for actionable interventions. The growing
body of research calls for innovative techniques that not only pre-
dict delays but also identify underlying causes, which remains
under-explored.

3.4 Need for causal machine learning
To bridge this gap, our study introduces causal machine learn-
ing techniques [3, 5, 8, 27], which aim to go beyond correlation
and offer insights into the causal mechanisms behind train de-
lays. This method allows for a deeper understanding of how dif-
ferent factors—such as route, operational status, and temporal
variables—affect delays, providing a more robust tool for decision-
makers in rail management.

By critically examining the current literature, we identify a sig-
nificant opportunity to enhance rail delay prediction using causal
models. This approach not only improves predictive accuracy but
also offers actionable insights into the factors that drive delays,
addressing a long-standing challenge in the field. Figure 2 shows
the causal graph for train delay prediction. Here, Y = Outcome (de-
lay), X = Covariates (date_of_travel, route_of_train, stop_ sequence,
operational status of train) and T = Treatment (spatial,temporal).

4 Problem definition
The problem of rail transit delay prediction using causal machine
learning (ML) involves estimating the impact of interventions (e.g.,
schedule changes, track maintenance) on delays. The primary ob-
jective is to predict delays by assessing the causal effect of these
interventions on the outcome 𝑌 (the delay), considering various
covariates 𝑋 (e.g., date_of_travel, route_of_train, stop_ sequence,
operational status of train). In mathematical terms, we define 𝑌𝑖 as
the delay for unit 𝑖 , 𝑇𝑖 as the binary treatment indicator (whether
an intervention was applied), and 𝑋𝑖 as a vector of covariates for
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T = Treatment

Spatial :  from, from_id, to, to_id

Temporal : scheduled_time, 

scheduled_time

Y = Outcome

Delay time

X = Features

date_of_travel

route_of _train

stop_sequence

operational status of train

Figure 2: Causal graph for delay prediction

unit 𝑖 . The key metrics to estimate are the ATE and ITE. ATE is
the expected difference in outcomes between treated and untreated
units, while ITE is the difference in outcomes for a specific unit. The
approach involves several steps: preprocessing the dataset, sam-
pling to ensure balanced representation, performing causal feature
engineering to construct relevant features, and training models to
estimate ATE and ITE. Feature analysis is then conducted to se-
lect the most significant features, followed by retraining the model
to enhance delay prediction accuracy. This framework leverages
causal ML to make informed predictions about rail transit delays.

5 Dataset
The dataset “NJ Transit Amtrak NEC Performance” is a trip transit
dataset focusing on rail delays within the New Jersey Transit (NJ
Transit) and Amtrak services along the Northeast Corridor (NEC).
The dataset is sourced from publicly available data provided by the
relevant transit authorities and is hosted on Kaggle1. It includes
detailed records of train schedules, delays, and other performance
metrics which are crucial for developing and validating predictive
models in the context of rail transit.
The dataset spans from January 1, 2018, to December 31, 2020. This
three-year period provides a comprehensive view of rail transit
performance over a significant time frame, enabling robust analysis
and forecasting. The dataset comprises approximately 1,500,000
rows. Each row represents an individual train operation, including
records of scheduled and actual departure and arrival times, as
well as calculated delays. Table 1 describes the key attributes of
the dataset. Table 2 shows the snapshot of the New Jersey Transit
Dataset.

6 Our proposed approach
Figure 3 shows our proposed framework. Let 𝑌 represent the rail
transit delay (the outcome we wish to predict) and let 𝑇 denote the
treatment or intervention whose effect we want to estimate on 𝑌 .
𝑋 represents a set of covariates or features that may include factors
like time of day, weather conditions, or train characteristics.
The goal is to predict rail transit delays by estimating the causal

1https://www.kaggle.com/datasets/pranavbadami/nj-transit-amtrak-nec-
performance

Table 1: Feature description for NJ transit dataset

Feature Description

Date The date on which the train
operation occurred.

train_id A unique identifier for each train service.
stop_sequence The sequence number indicating

the order of stops for a train.
from The station where the train

originates or departs from.
from_id A unique identifier for

the departure station.
to The destination station where

the train is scheduled to arrive.
to_id A unique identifier for the arrival station.
scheduled_time The planned departure or arrival

time according to the schedule.
actual_time The actual recorded departure

or arrival time.
delay_minutes The time difference in minutes

between the scheduled and actual time,
representing the delay.

status The operational status of the train
line The train line or route that the train is .

following
type The type of train service

Table 2: A snapshot of the NJ Transit Amtrak NEC Perfor-
mance dataset

Attribute Record 1 Record 2

Date 2024-09-01 2024-09-01
train_id 12345 63
stop_sequence 1 3
from New York Philadelphia
from_id 105 1
to Metropark Newark Airport
to_id 83 37953
scheduled_time 08:00 12:00
actual_time 08:05 12:10
delay_minutes 5 10
status Delayed Cancelled
line Northeast Corrdr Northeast Corrdr
type NJ Transit NJ Transit

effect of various interventions (e.g., schedule changes, track main-
tenance) using causal machine learning techniques. Specifically, we
aim to estimate ATE and ITE on the outcome 𝑌 using the covariates
𝑋 .

6.1 Modeling framework
The outcome variable 𝑌𝑖 ∈ R represents the delay for rail transit
unit 𝑖 . The treatment variable 𝑇𝑖 ∈ {0, 1} indicates whether a
particular intervention or treatment was applied, where𝑇𝑖 = 1 if the
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intervention was applied and𝑇𝑖 = 0 otherwise. The covariates𝑋𝑖 ∈
R𝑝 form a vector of 𝑝 observed features for rail transit unit 𝑖 . When
interventions are applied to features 𝑋𝑖 in a causal model, if 𝑇𝑖 = 1
(indicating an intervention), the feature is adjusted to reflect the
treatment’s impact. For example, if 𝑋𝑖 represents the train schedule
and 𝑇𝑖 = 1 corresponds to a schedule change, 𝑋𝑖 would be replaced
with the new schedule time. This adjustment helps estimate the
treatment effect by comparing outcomes under treatment (𝑇𝑖 = 1)
and no treatment (𝑇𝑖 = 0). This approach estimates the ITE and
ATE, providing insights into how interventions impact outcomes
like rail transit delays. The goal of causal inference is to calculate
ATE and ITE as explained in Sections 2.3 and 2.2.

The steps involved in our framework are summarized below.
• Use causal feature engineering to identify and encode rele-
vant features 𝑋 .
• Train models to estimate ATE and ITE using observational
data.
• Retrain the model with selected top features to improve
predictive performance.

Step 3

Causal feature engineering

X

YT

Step 1 Step 2

Step 4

ATE

(Average Treatment Effect)

ITE

(Individual Treatment Effect)

Step 5

Feature Analysis

Step 6

Rail transit dataset Data pre-processing Data sampling

Model building 

and training

Retrain model with 

top selected features

Figure 3: Proposed framework

6.2 Algorithm
Algorithm 1 involves several key steps for applying causal ML
to the rail transit dataset. It begins with Step 1, by taking a rail
transit dataset with covariates (e.g., train features), treatment (e.g.,
interventions like schedule changes), and outcome (e.g., delays) as
input, aiming to output predicted delays and causal effects such
as ATE and ITE. After data preprocessing to clean and encode the
dataset, it samples the data to ensure a balanced representation of
treated and untreated units in Step 4 and so on for each step of the
algorithm. Relevant features influencing treatment and outcome
are identified through causal feature engineering. The algorithm
then trains a causal machine learning model to estimate ATE and
ITE, providing insights into the causal impact of different features.
Significant features are analyzed based on their ATE values, and
the top ones are selected for model retraining to improve predictive
accuracy. The retrained model is used to predict rail transit delays,
enhancing accuracy by focusing on the most influential factors.

Detailed steps of the algorithm 1 are explained in Sections 6.3,
6.4, 6.5, 6.6, 6.7, and 6.8.

Algorithm 1 Rail Transit Delay Prediction using Causal ML
1: Input: Rail transit dataset with covariates 𝑋 , treatment 𝑇 , and

outcome 𝑌
2: Output: Predicted rail transit delays and causal effects (ATE,

ITE)
3: Step 1: Data Preprocessing: Clean and preprocess the dataset

to ensure consistency and quality:
𝐷 ← load_data(”𝑟𝑎𝑖𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 .𝑐𝑠𝑣”)

4: Handle missing values and encode categorical features:
𝐷′ ← preprocess(𝐷)

5: Step 2: Data Sampling: Perform data sampling to ensure a
balanced representation of treated and untreated units:
𝐷sampled ← sample_data(𝐷′)

6: Step 3: Causal Feature Engineering: Identify and encode
relevant features 𝑋 that are hypothesized to influence the treat-
ment 𝑇 and outcome 𝑌 :
𝑋causal ← causal_feature_engineering(𝐷sampled)

7: Step 4: Model Building and Training: Train causal machine
learning models to estimate ATE and ITE.

8: Train the model using 𝑋causal, 𝑌 ,𝑇 :
𝑓 (𝑋,𝑇 ) ← CausalModel(𝑋causal, 𝑌 ,𝑇 )

9: Step 5: Feature Analysis: Analyze and select the most signifi-
cant features based on their estimated effects on 𝑌 :
𝐹top ← {𝑓 | ATE(𝑓 ) > 𝜏}

10: Step 6: Model Retraining: Retrain the model using the top
selected features to improve predictive performance:
𝑓retrained ← CausalModel(𝑋𝐹top , 𝑌 ,𝑇 )

11: Evaluate the retrained model’s performance and predict rail
transit delays.

6.3 Data pre-processing
Prior to model training, raw rail transit data undergoes several pre-
processing steps to ensure the model’s effectiveness and efficiency.
The preprocessing pipeline includes the following stages:

6.3.1 Outlier detection and removal. Outliers in the dataset are
identified and removed to prevent their disproportionate influence
on the model. This step helps in maintaining the accuracy and
reliability of the model’s predictions.

6.3.2 Handling missing values. In the dataset, missing values were
initially labeled as "Unknown" or left blank. To standardize the
dataset, all missing values are categorized as "Unknown". Specif-
ically, since all variables in the dataset are categorical, missing
values are replaced with the "Unknown" category. This approach
ensures that the model can effectively handle these values without
introducing bias.

6.3.3 Categorical variable transformation. The dataset, consisting
entirely of categorical variables, requires transformation into a
suitable format for model training. To facilitate this, the data is
converted into a binary format using one-hot encoding. This pro-
cess is implemented using Pandas’ get_dummies function, which
creates binary dummy variables for each category of the categorical
variables. This transformation enables the model to interpret and
process categorical data effectively.
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6.3.4 Data integration. After handling missing values and convert-
ing categorical variables to binary format, the processed data is
integrated into a unified dataset, ready for causal machine learn-
ing model training. This ensures that the data is in a consistent
and machine-readable format, which is crucial for accurate model
performance.

By following these preprocessing steps, the dataset is prepared
for efficient and effective training of the causal ML model, enhanc-
ing its ability to accurately predict rail transit delays.

6.4 Data sampling
To ensure the relevance and quality of the data, the following crite-
ria were applied during the sampling process:

• Time frame: Data from the dataset spanning the most re-
cent two years were selected to ensure that the performance
metrics reflect current operational conditions.
• Data completeness: Only records with complete and valid
entries were included. Missing or corrupted data entries were
excluded to maintain the integrity of the analysis.
• Operational metrics: Records including critical perfor-
mance indicators such as delays, on-time performance, and
train schedules were prioritized. Non-essential metrics were
excluded to focus on key performance aspects.
• Geographic scope:Data from all relevant transit lineswithin
the NJ Transit and Amtrak NEC networks were considered
to provide a comprehensive view of the transit performance.

6.5 Causal feature engineering
To utilize causal machine learning techniques on the dataset, it is
divided into three key elements: X, Y, and T. The X element includes
various covariates like weather conditions, address specifics, and
vehicle attributes, offering essential contextual and environmental
information. The Y element represents the outcome of interest,
specifically train delays, which the causal analysis aims to under-
stand or predict. The T element encompasses treatment variables,
categorized into spatial and temporal factors, which are investi-
gated for their impact on the outcome. This approach enhances
prediction performance by focusing on the most relevant factors
influencing rail transit delays. Specifically, this involves identifying
features that have the highest ATE, such as "stop_sequence" and
"actual_time," which show the strongest influence on delays. By
filtering out less significant features and concentrating on these key
factors, the model can more effectively capture the causal relation-
ships that drive delays. This approach reduces noise and irrelevant
data, leading to improved predictive accuracy.

6.6 Model building and training
After the data pre-processing stage, the dataset is trained using
uplift tree classifier [19].

6.7 Feature analysis
The feature analysis is divided into two parts:

• ATE (Average Treatment Effect)
• ITE (Individual Treatment Effect)

6.7.1 ATE (Average Treatment Effect). The Table 5 presents the ATE
estimates for various features affecting rail transit delays:

Table 3: ATE values of the features in NJ transit dataset

Feature name ATE values

stop_sequence 0.98
actual_time 0.97
scheduled_time 0.88
line 0.85
status 0.84
to 0.77
type 0.71
Date 0.70
to_id 0.66
from 0.64
from_id 0.61
train_id 0.59

6.7.2 Key Highlights. The ATE estimates for various features im-
pacting rail transit delays reveal the following key insights:
• stop_sequence (ATE: 0.98): This feature has the highest
ATE value, indicating that the order in which a train stops
significantly affects the outcome. This is likely due to the
cumulative effect of stopping at multiple stations impacting
delays or performance.
• actual_time (ATE: 0.97): The actual time at which a train
departs or arrives is crucial in determining delays or perfor-
mance outcomes, as deviations from the schedule are directly
observed here.
• scheduled_time (ATE: 0.88): Scheduled time is also highly
significant, reflecting the planned schedule’s influence on
the performance metrics. However, its effect is slightly less
pronounced than the actual time.
• line (ATE: 0.85): Different train lines or routes have vary-
ing performance characteristics or constraints, making this
feature important in explaining differences in outcomes.
• status (ATE: 0.84): The operational status directly impacts
the outcome, with different statuses showing significant vari-
ations in performance metrics.
• to (ATE: 0.77): The destination station affects performance,
possibly due to varying conditions or handling at different
stations.
• type (ATE: 0.71): The type of service affects performance,
with express services potentially having different perfor-
mance characteristics compared to local services.
• Date (ATE: 0.70): The date of operation shows a moderate
effect, possibly reflecting seasonal or time-based variations
in performance.
• to_id (ATE: 0.66): The specific arrival station ID affects
performance outcomes, though its impact is less than some
other features.
• from (ATE: 0.64): The departure station also impacts per-
formance, though less so than the destination station and
other features.
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• from_id (ATE: 0.61): The departure station ID has a lower
effect compared to other features, indicating that while it is
a factor, its impact is less pronounced.
• train_id (ATE: 0.59): The train ID has the lowest ATE
among the features listed, suggesting it has the least direct
effect on performance compared to other factors.

The features with the highest ATE values, such as stop_sequence
and actual_time, have the most substantial impact on the outcomes
in the NJ Transit dataset. Features like scheduled_time, line, and
status also significantly influence performance. In contrast, features
such as train_id have a relatively lower impact. This ordering helps
prioritize the features that are most critical for understanding and
predicting outcomes related to train performance.

6.7.3 ITE for Rail Transit Features. Table 4 presents the ITE of the
top 5 features. These values represent the impact of changes in each
feature on delay predictions for individual train trips.

Sr. no. Feature name ITE key ITE value
1 stop_sequence 1 0.77

6 0.87
18 0.98
12 0.88

2 actual_time 02-04-2018 06:41 0.97
02-03-2018 01:21 0.88

3 scheduled_time 02-04-2018 06:41 0.87
07-04-2018 01:21 0.88

4 line Northeast Corrdr 0.85
Amtark 0.86

5 status cancelled 0.88
departed 0.84
estimated 0.83

Table 4: ITE values for NJ transit dataset

The Table 4 provides crucial insights into the factors affecting
rail transit delays, specifically highlighting how different features
in the NJ Transit dataset contribute to these delays through their
ITE values. The important findings are as follows:

(1) The stop_sequence feature stands out as a significant pre-
dictor of delays, with ITE values ranging from 0.77 to 0.98.
The highest ITE value of 0.98 is associated with the stop se-
quence key of 18, indicating that certain stop sequences have
a strong impact on the likelihood or extent of delays. This
suggests that the position of a stop within the sequence could
influence delays, possibly due to congestion or scheduling
issues.

(2) Actual_time is another critical factor influencing delays, with
ITE values of 0.97 and 0.88 for specific timestamps. The
higher ITE value of 0.97 for the timestamp "02-04-2018 06:41"
highlights the importance of the exact time when a train
operates in predicting delays. This suggests that delays could
be more likely during specific times, possibly due to peak
travel periods or operational challenges.

(3) Scheduled_time, while closely related to actual time, also
shows significant ITE values (0.87 and 0.88), indicating that
the planned schedule is an important factor in delay pre-
diction. Consistent ITE values for different scheduled times

suggest that discrepancies between planned and actual oper-
ations could be a key driver of delays.

(4) The train line, particularly "Northeast Corridor" and "Am-
trak," shows ITE values of 0.85 and 0.86. This indicates that
the specific route or line a train operates on can influence
delays, potentially due to the varying infrastructure, traffic,
or operational conditions associated with different lines.

(5) The status of the train, whether it is "cancelled," "departed," or
"estimated," reveals ITE values ranging from 0.83 to 0.88. Can-
cellations have the highest ITE value of 0.88, underscoring
that trains which are canceled are strongly associated with
delay outcomes. Even trains that have departed or are esti-
mated to depart show significant ITE values, indicating that
operational status is a critical indicator of potential delays.

6.8 Retraining model
The frequency and duration for retraining a model are important
considerations for maintaining accuracy and relevance. Rail tran-
sit systems often experience frequent changes, such as schedule
updates, new routes, and alterations in operational procedures.
Therefore, it is essential to retrain the model with the most recent
data to ensure it captures these changes effectively. Additionally,
as the model encounters new data, it can refine its understanding
of the relationships between different features and delay outcomes,
thereby enhancing forecasting accuracy. Another important factor
is the phenomenon known as concept drift, where the nature of
delays and operational disruptions may evolve over time, leading
to shifts in the underlying data distribution. Regular retraining
allows the model to adjust to these changes, ensuring continued
effectiveness. Moreover, incorporating new features into the model
can further improve its predictions; as new data regarding train
status or route-specific information becomes available, retraining is
necessary. Overall, consistent model updates are vital in a dynamic
environment like rail transit to improve predictive performance and
adapt to evolving operational realities, ultimately ensuring more
reliable service for passengers. The feature rankings based on the
ATE values are shown in Table 5

Table 5: Top ranked features of New Jersey transit dataset
according to ATE score

Feature rank Feature

1 stop_sequence
2 actual_time
3 scheduled_time
4 line
5 status

Scheduled Departure Time is a crucial feature that denotes when
a train is planned to leave a station, helping to understand de-
lays relative to schedules and identify patterns based on departure
times. Actual Departure Time indicates when the train actually
departs, fundamental for calculating delays and assessing service
performance. Scheduled Arrival Time represents when the train
is expected to arrive, essential for evaluating reliability. Actual Ar-
rival Time shows when the train reaches its destination, critical for
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determining actual delay duration. Lastly, the Route identifies the
train’s path, valuable for analyzing route-specific issues affecting
overall performance.

Incorporating features from Table 5 improves the model’s delay
forecasting accuracy and enhances operational efficiency in rail
transit systems.

7 Experimental setup
The experiments were conducted using Python 3.12.3 on a server
equipped with a 3.31 GHz Intel(R) Xeon(R) CPU and 16 GB of RAM.
We employed the CausalML library [13, 27] for implementing causal
machine learning techniques. This library offers various uplift mod-
eling and causal inference methods, utilizing advanced algorithms
based on contemporary research. Key features include uplift mod-
eling for estimating causal impacts, causal inference methods for
identifying relationships within the dataset, and integration of state-
of-the-art techniques. This setup ensures a comprehensive analysis
of train delays and causal relationships using modern causal ML
methods.

8 Results
The analysis of ATE estimates for various features impacting rail
transit delays highlights the key factors influencing train perfor-
mance as shown in Figure 4. The ATE values indicate the relative im-
portance of each feature in predicting delays or other performance
outcomes. Stop feature (ATE: 0.98) emerges as the most influential
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Figure 4: Feature vs ATE scores

factor. This suggests that the order of stops plays a crucial role,
likely due to the cumulative impact of multiple stops on the train’s
schedule adherence. As trains make more stops, the likelihood of de-
lays increases, making this a critical factor in performance analysis.
Actual Time (ATE: 0.97) is another highly significant feature. This
reflects the importance of when a train actually departs or arrives,
as deviations from the schedule are directly observed. It highlights
how real-time operations, rather than just planned schedules, are
pivotal in determining train performance. Scheduled Time (ATE:
0.88), while still important, has a slightly lower impact than actual
time. This shows that while the planned schedule is essential, the

actual execution of the schedule (actual time) has a more significant
effect. Line (ATE: 0.85) and Status (ATE: 0.84) are also critical, indi-
cating that different train routes and operational statuses introduce
varying performance dynamics. These features help explain the
differences in delays or other performance metrics across different
lines and operational conditions. Less influential factors include
destination (ATE: 0.77) and Type of Service (ATE: 0.71), which still
play roles in determining outcomes, but to a lesser extent. The date
feature (ATE: 0.70) of operation also has a moderate impact, likely
reflecting seasonal variations. Finally, features like Train ID (ATE:
0.59) have the least impact, indicating that while individual train
characteristics matter, they are not as crucial as the operational and
scheduling factors.

When comparing the graphs for the years 2018 (Figure 5), 2019
(Figure 6), and 2020 (Figure 7), a clear pattern emerges showing
that as the number of stops increases, the average train delay time
also tends to rise. However, there are some differences in how this
trend evolves across the years.
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Figure 5: Average train delay (min) vs, number of stops graph
for the year 2018

The graph in Figure 5 shows the relationship between average
train delay time (in minutes) and the number of stops for the year
2018. The trends show an initial increase in delay time as the number
of stops increases from 0 to approximately 10 stops. This suggests
that adding stops generally contributes to longer delays, likely due
to the accumulation of minor delays at each stop. After reaching
a peak delay time of around 5 minutes at 10 to 12 stops, the trend
becomes more variable. Interestingly, after 12 stops, the delay time
slightly decreases until around 17 stops, where it drops to its lowest
point, approximately 2 minutes. This drop might be due to the
optimization of train schedules on longer routes or the presence
of express services that skip certain stops, reducing overall delay.
However, after 17 stops, there is a sharp increase in delay time,
rising to over 5 minutes by the time the train reaches 20 stops.
This indicates that beyond a certain threshold, adding more stops
significantly impacts the overall delay, possibly due to compounded
operational inefficiencies. The graph for the year 2019 (Figure 6)
follows a similar initial pattern to 2018, with delays increasing
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Figure 6: Average train delay (min) vs number of stops graph
for the year 2019
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Figure 7: Average train delay (min) vs number of stops graph
for the year 2020

as the number of stops rises to 10–12 stops, peaking at around 6
minutes. After 12 stops, the delay time fluctuates slightly, remaining
above 3 minutes, before climbing again sharply after 17 stops. The
delay time reaches approximately 6 minutes by 20 stops, showing
a higher maximum delay than in 2018. In 2020 (Figure 7), there
is a more gradual increase in delay time up to 10 stops, with a
slower rise compared to the previous two years, peaking around
5 minutes. Beyond 12 stops, there is less fluctuation in delay time,
remaining between 4 and 5 minutes up until 17 stops. The rise in
delay time after 17 stops is more moderate than in 2019, reaching
approximately 5 minutes at 20 stops.

All three years show an initial rise in delay time as the number
of stops increases, peaking around 10 to 12 stops. The maximum
delay in 2019 is higher than in both 2018 and 2020. After 12 stops,
there are variations in how delay time behaves, with 2018 showing
a sharper dip and rise, 2019 maintaining a higher delay, and 2020
showing more stability but still increasing.

Overall, the dependency of train delay on the number of stops
reflects an initial increase, a mid-range optimization or efficiency,
followed by a sharp increase as the number of stops becomes ex-
cessive.

8.1 Seasonal trends
The Figure 8 shows the percentage of delays each month, highlight-
ing potential trends:

Figure 8: Percentage rail transit delay seasonal trends for the
year 2018

October experiences the highest delay percentage at 12%, likely
due to increased fall travel and adverse weather. August and Sep-
tember follow closely with 10.2% and 10.1% delays, possibly linked
to summer’s end, which sees more travel and maintenance ac-
tivities. December and November show 10.8% delays, indicating
potential disruptions from winter weather like snow and ice. Con-
versely, March and April have lower delay percentages of 9.1% and
8.8%, suggesting fewer disruptions due to favorable spring weather.
Meanwhile, May, June, and July present moderate delay percentages
around 9.3%, reflecting balanced impacts from summer challenges
and maintenance.

This monthly breakdown allows the model to incorporate sea-
sonal variation into its prediction of rail transit delays, enabling
more accurate and context-sensitive forecasts for different times
of the year. These insights help in understanding when delays are
more likely, guiding both operational improvements and policy
decisions.

8.2 Comparison with baselines
The Table 6 presents accuracy metrics of a model trained using
different ML approaches like XGBoost (XGB), Random Forest (RF),
Support Vector Machine (SVM), and UpliftTreeClassifier. The ta-
ble compares the accuracy of various machine learning classifiers
trained with and without feature selection in a causal ML context,
specifically using an uplift tree classifier. It shows four accuracy
values: 93.4% for XGBoost, 91.89% for Random Forest, and 90.56%
for Support Vector Machine when not using selected features. In
contrast, the uplift tree classifier achieved the highest accuracy
of 95.6% when trained with selected features. This indicates that
feature selection significantly improves model performance, par-
ticularly with the uplift tree classifier, highlighting its potential
effectiveness in causal analysis applications.
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Table 6: Accuracy comparison of classifiers with and without
feature selection

Accuracy Accuracy Accuracy Accuracy
without without without with
selecting selected selecting selected
features features features features
when when when when
trained trained trained trained
using using using using
XGB RF SVM UpliftTreeClassifier

93.4% 91.89% 90.56% 95.6%

9 Conclusion
In analyzing rail transit delays with causal machine learning, we
identified the top five features from the NJ Transit dataset: stop_
sequence, actual_time, scheduled_time, line, and status. This was
achieved through data preprocessing, sampling, causal modeling,
and feature analysis using an uplift tree classifier. Our analysis of
ITE and ATE revealed that stop_sequence and actual_time are the
most impactful on delays. Scheduled_time, line, and status also
significantly influence delays, underscoring their importance in
predictive modeling. Delays were notably higher during peak times,
indicating a need for capacity adjustments or operational improve-
ments. Variability in delays across routes suggests that targeted
interventions could be more effective than system-wide changes.
Seasonal and weather factors further contribute to delays, highlight-
ing the need for better weather forecasting and contingency plan-
ning. Operational elements like train schedules and maintenance
also affect delays. Retraining the model with these features en-
hances predictive accuracy, emphasizing the importance of feature
selection and causal inference in improving transit performance.
Future research could explore infrastructure or specific train charac-
teristics to deepen understanding. Our approach not only advances
methodological techniques but also provides actionable insights
for improving rail transit performance. Future research could delve
deeper into infrastructure issues or specific train characteristics to
further understand the dynamics of transit delay performance.
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