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When Will Lucy Get Infected?
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Would Lucy Have Gotten Infected Earlier ?

Observed Trajectory

Counterfactual Trajectory
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Modelling Events Using Point Processes

In our paper, we focus on the methods used to generate events
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Does the method(+assumptions) used 
to generate events from the intensity 
affect the counterfactual sequence?
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Yes, lets explore how.
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What if?

If outcome is T

If outcome is H

ucf ∼ U([P(H),1])

ucf ∼ U([0,P(H)])

u ∼ U([0,1])
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Simulation algorithms and their 
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The Probability of the next event happening in 
 at time tΔ

P(event) =λ(t)Δ
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Numerical Integration SCM

Event Time

Event time of event i

Noise

Uniformly at random in [0,1]

Intensity

Instantaneous rate after event i

U0 U1 U2 U3 U4

History

Past events up event i

λ0 λ1 λ2 λ3 λ4

H0 Ht1 Ht2 Ht3 Ht4

t0 t1 t2 t3 t4
…

17



Numerical Integration Counterfactual Generation
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Simulation Case Study

23

Lucy



Computing Counterfactuals

Transmissibility 
of the Virus : β

Connectivity of 
the Society : E

Intensity of 
Infection Events

Sequence of 
Infection Events

24



Computing Counterfactuals

Transmissibility 
of the Virus : β

Connectivity of 
the Society : E

Intensity of 
Infection Events

Sequence of 
Infection Events

0

1

8

10

5
7

12
13

16
17

19

2

6

15

3

4

9

18

11

14

24



Counterfactual Simulations
Original sequence

Infections as Event Sequence

Time

25



Counterfactual Simulations
Original sequence

Infections as Event Sequence

Time

Counterfactual 
sequence with 
smaller infection rat

Decreasing  (infectivity) decelerates the infection processβ

25



Counterfactual Simulations
Original sequence

Infections as Event Sequence

Time

Counterfactual 
sequence with 
smaller infection rat

Decreasing  (infectivity) decelerates the infection processβ

25



Counterfactual Simulations
Original sequence

Infections as Event Sequence

Time
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sequence with 
smaller infection rat

Decreasing  (infectivity) decelerates the infection processβ
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Introducing new edges (increasing connectivity) open new pathways
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datasciapps.de
Check out other cool projects

Contact me at
sumantrak.mukherjee@dfki.de

http://sebastian.vollmer.ms
mailto:sumantrak.mukherjee@dfki.de


Thanks for your attention!
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