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When Will Lucy Get Infected?




Observed Trajectory
Counterfactual Trajectory
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In our paper, we focus on the methods used to generate events



Does the method(+assumptions) used
to generate events from the intensity
affect the counterfactual sequence?



Yes, lets explore how.



Counterfactuals



Counterfactuals

0-0o N
P(T) = 0.6



Counterfactuals

u ~ U([0,1])

0-0o N
P(T) = 0.6




Counterfactuals

u ~ U([0,1])

0 -oc
P(T) = 0.6




Counterfactuals

u ~ U([0,1])
S T

P(H) = 0.4
P(T) = 0.6




Counterfactuals

u ~ U([0,1])

S T

What if?

P(H) = 0.4
P(T) = 0.6




Counterfactuals

u ~ U([0,1])

e R

P(T) = 0.6 Il
What if?

P(T) = 0.4




Counterfactuals

u ~ U([0,1])
P(H) = 0.4
P(T) = 0.6

T

What if?
I H

P(H) = 0.6
P(T) = 0.4




Counterfactuals

u ~ U([0,1])

P(H) = 0.4

P(T) = 0.6 Il
What if?

P(H) = 0.6

P(T) = 0.4

Moped
P(T) = 0.7




Counterfactuals

u ~ U(10,1])

P(H) =0
0o I

What if?

-0 B H
-0, I T



Counterfactuals

~ U([0,1])

o)~ 06_ T

What if?

Pm s . I H
ooy T



Counterfactuals

u~ U([0,1])
0o IV
T —
What if?
SR H

o D
P(I') 0.7



Counterfactuals

u ~ U([0,1])
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Simulation algorithms and their
SCMs
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A1)

Naive Method

Discretise the time axis into very small time
intervals A and for each A calculate

The Probabillity of the next event happening in
A attimet = A(f)A

Sample from a uniform distribution

h Bl s i ~ U([0, 1)

P(no event) =(1 — A(?)A)

Event happens if : u < A(H)dt
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Naive Method SCM
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Numerical Integration SCM
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Thinning Method
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Revisiting our Case Study:
A Mechanistic Model of Epidemic
Spreading
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Counterfactual Simulations

Infections as Event Sequence

Decreasing f (infectivity) decelerates the infection process
sequence with
smaller infection rat

Introducing new edges (increasing connectivity) open new pathways
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Thanks for your attention!
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