Peculiarities of Counterfactual Point Process Generation Gerrit Großmann, Sumantrak Mukherjee, Sebastian Vollmer

Would increasing vacainations in January 2021 have helped contain the spread of COVID-19?

Had the federal reserves placed rate cuts in early 2024, would the stock market still have crashed?

Had the federal reserves placed rate cuts in early 2024, would the stock market still have crashed? If stabilisation measures had been enacted earlier, would the Boko Haram insurgent attacks still have occurred?

Emergency Calls

Armed Conflicts

Earthquakes

Timeline of the U.S. Stock Market Crash (1929-2021)

Investopedia

Stock market crashes

When Will Lucy Get Infected?

Would Lucy Have Gotten Infected Earlier?

Observed Trajectory

Counterfactual Trajectory

Dynamics and Background rate

11 11 $t_1 t_2 t_3 t_4$

Dynamics and Background rate

Intensity

11 11 $t_1 t_2 t_3 t_4$

Dynamics and Background rate

Generate Events

Intensity

11 $t_1 t_2 t_3 t_4$

Dynamics and Background rate

Generate Events

Intensity

Modelling Events Using Point Processes History Dynamics and Background rate Exponential Decay for a Single Ever \sqrt{t} **Generate Events**

In our paper, we focus on the methods used to generate events

Intensity

Does the method(+assumptions) used to generate events from the intensity affect the counterfactual sequence?

Yes, lets explore how.

Counterfactuals

Counterfactuals

P(H) = 0.4P(T) = 0.6

What if?

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4

What if?

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4 What if?

Η

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4P(H) = 0.3P(T) = 0.7

What if?

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4P(H) = 0.3P(T) = 0.7

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4P(H) = 0.3P(T) = 0.7

P(H) = 0.4P(T) = 0.6

P(H) = 0.6P(T) = 0.4P(H) = 0.3P(T) = 0.7

If outcome is H $u^{cf} \sim U([0,P(H)])$

If outcome is T $u^{cf} \sim U([P(H), 1])$

С

С

С

How does diet influence diabetes? **Observations : Seeing**

How does diet influence diabetes? **Observations : Seeing**

Does treating blood sugar prevent diabetes **Interventions : Doing**

How does diet influence diabetes? Observations : Seeing

Does treating blood sugar prevent diabetes

Interventions : Doing

Would Lucy still have gotten diabetes if her blood sugar was controlled

Counterfactuals : Imagining

Structural Causal Model (SCM)

How does diet influence diabetes? Observations : Seeing

Does treating blood sugar prevent diabetes

Interventions : Doing

Would Lucy still have gotten diabetes if her blood sugar was controlled

Counterfactuals : Imagining

Structural Causal Model (SCM)

How does diet influence diabetes? Observations : Seeing

Does treating blood sugar prevent diabetes

Interventions : Doing

Would Lucy still have gotten diabetes if her blood sugar was controlled

Counterfactuals : Imagining

Simulation algorithms and their SCMs

Statistically Equivalent Event Generation

Naïve Method

Naive Method

Discretise the time axis into very small time intervals Δ and for each Δ calculate

$P(event) = \lambda(t)\Delta$ $\mathsf{P}(\mathsf{no event}) = (1 - \lambda(t)\Delta)$

Naive Method

Discretise the time axis into very small time intervals Δ and for each Δ calculate

The Probability of the next event happening in Δ at time t = $\lambda(t)\Delta$

$P(event) = \lambda(t)\Delta$ $\mathsf{P}(\mathsf{no event}) = (1 - \lambda(t)\Delta)$

Naive Method

Discretise the time axis into very small time intervals Δ and for each Δ calculate

The Probability of the next event happening in Δ at time t = $\lambda(t)\Delta$

Sample from a uniform distribution $u \sim U([0,1)]$

Naive Method

Discretise the time axis into very small time intervals Δ and for each Δ calculate

The Probability of the next event happening in Δ at time t = $\lambda(t)\Delta$

Sample from a uniform distribution $u \sim U([0,1)]$

Event happens if : $u \leq \lambda(t)dt$ 13

History

Past events up to *t*

Intensity

Instantaneous rate at time *t*

Event

Binary variable indicates if event at *t*

Noise

Uniformly at random in [0,1]

Naïve Method SCM

Original sequence and intensity

Original sequence and intensity

Original sequence and intensity

Original sequence and intensity

 $t_1 t_2 t_3$

Probability of no event happening

$u \sim U([0,1])$

 $t_1 t_2 t_3$

Probability of no event happening

$u \sim U([0,1])$

$$u \ge e^{-\int_{t'}^{t'+x} \lambda(t) dt}$$

Probability of no event happening

$u \sim U([0,1])$

$$u \ge e^{-\int_{t'}^{t'+x} \lambda(t) dt}$$

Probability of no event happening

$u \sim U([0,1])$

$$u \ge e^{-\int_{t'}^{t'+x} \lambda(t) dt}$$

Probability of no event happening

$u \sim U([0,1])$

$$u \ge e^{-\int_{t'}^{t'+x} \lambda(t) dt}$$

Probability of no event happening

$u \sim U([0,1])$

$$u \ge e^{-\int_{t'}^{t'+x} \lambda(t) dt}$$

History Past events up event *i*

Intensity

Instantaneous rate after event i

Event Time

Event time of event i

Noise Uniformly at random in [0,1]

Numerical Integration SCM

Numerical Integration Counterfactual Generation

Counterfactual History Past events up to event *i*

Counterfactual Intensity Instantaneous rate at time

Counterfactual Event times Event time of event *i*

Noise Conditioned on observed factual sequence

 $\int_{t_3}^{t_4} \lambda(t) dt = -\ln(u_3) = \int_{t_3^{cf}}^{t_4^{cf}} \lambda^{cf}(t) dt$

Generate candidate events $u \sim U[(0,1)]$ $t^{c} = \frac{-ln(u)}{\lambda_{max}}$

Generate candidate events $u \sim U[(0,1)]$ $t^c = -ln(u)$ λ_{max}

Probability of acceptance for all candidate events

 $\lambda(t^{c})$ ^Amax

Generate candidate events $u \sim U[(0,1)]$ $t^c = -ln(u)$ max

Probability of acceptance for all candidate events

 $\lambda(t^{c})$ Amax

We accept candidate event if

 $u' \sim U([0,1])$

$$u' \leq \frac{\lambda(t^c)}{\lambda_{max}}$$

Noise Uniformly at random in [0,1]

> **Event Time** Of the homogenous TPP

> > Intensity Actual rate at time *t*

Event Rejection or acceptance of event

Noise Uniformly at random in [0,1]

 H_0

History Past events up event i

Thinning Method SCM

Noise posterior for candidate event generation

Noise posterior for accepting/rejecting candidate events

Hypothetical counterfactual λ_{\max}^{cf}

Noise posterior for candidate event generation

Noise posterior for accepting/rejecting candidate events

Hypothetical counterfactual λ_{\max}^{cf}

Noise posterior for candidate event generation

Counterfactual Event Time Of the homogenous TPP

> Noise posterior for accepting/rejecting candidate events

Hypothetical counterfactual λ_{\max}^{cf}

Noise posterior for candidate event generation

Counterfactual Event Time Of the homogenous TPP

Intensity Hypothetical counterfactual rate at time *t*

Noise posterior for accepting/rejecting candidate events

Hypothetical counterfactual λ_{\max}^{cf}

Noise posterior for candidate event generation

Counterfactual Event Time Of the homogenous TPP

Intensity Hypothetical counterfactual rate at time *t*

Counterfactual Event Rejection or acceptance

> Noise posterior for accepting/rejecting candidate events

Revisiting our Case Study: A Mechanistic Model of Epidemic Spreading

Simulation Case Study Lucy

Computing Counterfactuals

Computing Counterfactuals

Original sequence

Infections as Event Sequence

Time

Original sequence

Decreasing β (infectivity) decelerates the infection process

Counterfactual sequence with smaller infection rat

Infections as Event Sequence

Time

Original sequence

Decreasing β (infectivity) decelerates the infection process

Counterfactual sequence with smaller infection rat

Infections as Event Sequence

Time

Original sequence

Counterfactual sequence with smaller infection rat

Infections as Event Sequence

Decreasing β (infectivity) decelerates the infection process

Introducing new edges (increasing connectivity) open new pathways

$\lambda^{{f cf}(t)}$ Naïve Method C Cİ t_{Λ} t_2 Numerical $\lambda^{\mathsf{cf}}(t)$ Integration Method t_1^{cf} t_4^{cf} $t_3^{\rm cf}$ $t_5^{\rm cf}$ $t_2^{\rm cf}$ Thinning $\lambda^{\mathbf{cf}_{\mathcal{L}}}$ Method $\begin{array}{ccc} {}^{\rm cf} {}^{\rm cf} & {}^{\rm cf} \\ t_1 t_2 & t_3 \end{array}$ Cf Cf t_4 t_5

Contact me at sumantrak.mukherjee@dfki.de Check out other cool projects datasciapps.de

Thanks for your attention!

Monotonicity in Counterfactuals

P(H) = 0.4P(T) = 0.6P(H) = 0.3P(T) = 0.7

28