
Peculiarities of Counterfactual 
Point Process Generation

Gerrit Großmann, Sumantrak Mukherjee, Sebastian Vollmer 

1



2



Would increasing 
vaccinations in 
January 2021 
have helped 
contain the 
spread of 
COVID-19?

2



Would increasing 
vaccinations in 
January 2021 
have helped 
contain the 
spread of 
COVID-19?

Had the federal 
reserves placed 
rate cuts in early 
2024, would the 
stock market 
still have 
crashed?

2



Would increasing 
vaccinations in 
January 2021 
have helped 
contain the 
spread of 
COVID-19?

Had the federal 
reserves placed 
rate cuts in early 
2024, would the 
stock market 
still have 
crashed?

If stabilisation 
measures had 
been enacted 
earlier, would the 
Boko Haram 
insurgent attacks 
still have 
occurred?

2



Emergency Calls

Earthquakes

Armed Conflicts Stock market crashes
3



When Will Lucy Get Infected?
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Would Lucy Have Gotten Infected Earlier ?

Observed Trajectory

Counterfactual Trajectory
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Modelling Events Using Point Processes

In our paper, we focus on the methods used to generate events
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Does the method(+assumptions) used 
to generate events from the intensity 
affect the counterfactual sequence?
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Yes, lets explore how.
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What if?

If outcome is T

If outcome is H

ucf ∼ U([P(H),1])

ucf ∼ U([0,P(H)])

u ∼ U([0,1])
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The Probability of the next event happening in 
 at time tΔ
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Numerical Integration SCM
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Counterfactual Simulations
Original sequence

Infections as Event Sequence

Time

Counterfactual 
sequence with 
smaller infection rat

Decreasing  (infectivity) decelerates the infection processβ

Counterfactual 
sequence with 
higher connectivity

Introducing new edges (increasing connectivity) open new pathways
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Recap
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datasciapps.de
Check out other cool projects

Contact me at
sumantrak.mukherjee@dfki.de

http://sebastian.vollmer.ms
mailto:sumantrak.mukherjee@dfki.de


Thanks for your attention!
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