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Spatial-temporal data
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COVID spread Crime activities

Seismic activitiesNeuronal networks

Supply chain networks

Traffic incidents



Spatial correlation as network connectivity
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• Traditional spatial correlation

Underlying space is Euclidean

• Network influence

Underlying space is a graph



COVID-19 cases over US counties
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• Influence: 
• nearby locations, major cities, and transportation hubs have a larger influence 

• Influence may change over time
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“High-resolution spatio-temporal model for county-level COVID-19 activity in the U.S.” Zhu, Bukharin, Xie, Santillana, Yang, X. ACM 
Transactions on Management Information Systems (TMIS), 2021. 
“Early detection of COVID-19 hotspots using spatio-temporal data.” Zhu, Bukharin, Xie, Yamin, Yang, Keskinocak, and X. IEEE Journal 
Selected Topics in Signal Processing (JSTSP) 2022, ICML Time Series Workshop (Best Paper Award, 2nd Place) 2021.



Discrete event data (time, marks) 
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Demand over networks

Major earthquakes

Aftershocks

Earthquake catalog

Daily #case at US counties

Neural spike trains

Police reports

Tweets



Discrete events data: “Dots”

• Discrete events data: A sequence of (time, marks)

• Asynchronously occur over time and mark space

• Marks contain additional information: location, category, description--  
can be high-dimensional
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Node 1

Node 2

Node 3



Different from i.i.d. data and classic time-series
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• Asynchronously recorded data
• Interrelated over space and time
• Timing of data point carries information



Influence

• “Triggering” or ”inhibition effect” of an event over space and time 

• Granger causality
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Time passes

Zhu, Li, Peng, X. Imitation learning of spatio-temporal point processes. 
IEEE-TKDE, 2022.  NeurIPS AI for Earth Sciences Workshop, 2020. 



Crime data

• “Broken window effect”

Once a neighborhood has a crime incident, 
similar crime is more likely to happen.

• “Buckhead burglary” in Atlanta, 2017

22 cases committed by a serial offender.
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(Collaboration with Atlanta Police Department.)

(Zhu, and X., Annals of Applied Statistics, 2022 
Presented at JSM “Best of AOAS, 2021.”)



Spatio-temporal point processes with attention for traffic 
congestion event modeling. Zhu, Ding, Van Hentenryck, and X. 
IEEE Transactions on Intelligent Transportation Systems, 2022.

Traffic data

• Traffic congestion events

• Two triggering mechanisms:
• Traffic congestion triggers future 

congestion 

• Traffic incidents trigger congestion
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• Use discrete event data, recover spatio-temporal 
influence: Granger causality

• Interpretation: Understanding underlying 
influence network and temporal influence

• Prediction: predicting the chance of a future 
event

• Monitoring: detecting changes – anomalies and 
novelty

• Decision: intervention, optimization

Goals
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How to model influence? 

• Hawkes processes (Hawkes 1971)

• Point-process: a sequence of random 
events at times {𝑡1, 𝑡2, … }

𝜆 𝑡 𝑑𝑡 = 𝑃 event in 𝑡, 𝑡 + 𝑑𝑡 𝐻𝑡

𝜆 𝑡 𝐻𝑡 = lim
Δ𝑡→0

𝐸[𝑁(𝑡 + Δ𝑡)|𝐻𝑡]

Δ𝑡
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Basic of point processes

A sequence of random events in time { t1, t2, . . .}

Temporal	point	processes
• Random	process	consists	of	a	list	of	discrete	

events	in	time	
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Hawkes, Alan G. "Spectra of some self-exciting and mutually 
exciting point processes." Biometrika 1971.



Common point processes

• Poisson process: 𝜆 𝑡 = 𝜇(𝑡) deterministic

• Hawkes process: conditional intensity depends on history

𝜆 𝑡 = 𝜇 𝑡 + influence from past

• Self-correcting process

𝜆 𝑡 = 𝜇 𝑡 − influence from past
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Point processes

I Poisson process λ t = µt : deterministic rate

I Hawkes process (Hawkes 1971):

Intensity function depends on history

λ t = µt + influence from past
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I Self-correct ing process

λ t = µt − influence from past



Hawkes process

• Conditional intensity function

𝜆 𝑡 = 𝜇 𝑡 + 𝛼 ෍

𝑡𝑘<𝑡

𝜙(𝑡 − 𝑡𝑘)
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Point processes

I Poisson process λ t = µt : deterministic rate

I Hawkes process (Hawkes 1971):

Intensity function depends on history

λ t = µt + influence from past
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Baseline intensity

Magnitude of influence 

Influence kernel function



Hawkes process over networks

• Events on 𝐾 nodes 𝑡1, 𝑢1 , 𝑡2, 𝑢2 , …

𝜆𝑖 𝑡 = 𝜇𝑖 𝑡 + ෍

𝑡𝑘<𝑡

𝛼𝑖,𝑢𝑘
𝜙 𝑡 − 𝑡𝑘

• Commonly assumed: Exponential decay influence

                  𝜙 𝑡 = 𝛽𝑒−𝛽𝑡 , 𝑡 ≥ 0 (Markovian)
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Baseline intensity 
at node 𝑖 Influence between 

node 𝛼𝑖𝑗 

Temporal influence 
kernel function
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Hawkes processes literature

• Single and multi-dimensional Hawkes processes 
(Alan Hawkes 1971) (review, Reinhart 2018)

• Continuous spatio-temporal modeling with diffusion kernel (ETAS) 
(Ogata 1999) (Zhu et al. 2020)

• Asymptotic convergence results of linear and non-linear processes
(Bacry, Dayri, Muzy 2012) (L. Zhu 2013) (L. Zhu 2015)

• Estimate network interactions, assuming known influence function:
(Stomakhin, Short, Bertozzi 2011), (Myers, Leskovec, 2014), (Rodriguez et al. 2011) (Yang, Zha 
2013) (Hall, Willett 2016) (Chen et al. 2017) (Li et al. 2018) (Yuan et al. 2019)

• Causal inference and testing for purely temporal process
(Chen, Witten, Shojaie 2017) (Xu, Farajtabar, Zha, 2016) (Achab et al. 2017)

• Bayesian model 
(Rasmussen 2013) (Linderman, Wang Blei 2017) (Donnet, Rivoriard, Rosseau 2020)
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• Uncertainty quantitation

• Structural assumptions

• General influence kernel
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Maximum likelihood

• Parameters are solved by maximum likelihood

max
𝜃

 ℓ(𝜃)

• Property of the optimization problem

• When 𝜃 = {𝜇, 𝛼𝑖𝑗}, and 𝛽 is fixed, it can be shown that ℓ 𝜃  is convex in 𝜃

• When 𝜃 = {𝜇, 𝛼𝑖𝑗 , 𝛽}, problem is non-convex

• When influence ≠ exponential decay, may not have closed-form integration 
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Maximum likelihood estimate for 𝜶𝒊
• Define coefficient for 𝑖-th node as 𝜶𝑖

max
𝐴

ℓ 𝐴 = ෍

𝑖=1

𝐾

ℓ𝑖 𝜶𝑖

• Log-likelihood for the 𝑖-th node 

ℓ𝑖 𝛼𝑖 = − න
0

𝑇

𝜆𝑖 𝑡 𝑑𝑡 + න
0

𝑇

log 𝜆𝑖(𝑡) 𝑑𝑁𝑡
𝑖

• Assuming known influence function 𝜙 𝑡 , ℓ𝑖 𝜶𝑖  convex function in 𝜶𝑖 

• Can be solved efficiently to global solution (e.g., gradient descent)

20

Decoupled in nodes, enable 
decentralized estimation



Likelihood function for Hawkes networks

• Log-likelihood function for Hawkes network, exponential influence
• Data 𝑡𝑖, 𝑢𝑖 , 𝑖 = 1, … , 𝑛

ℓ 𝜃 = ෍

𝑖=1

𝑛

log 𝜇𝑢𝑖
+ ෍

𝑡𝑗<𝑡𝑖

𝛼𝑢𝑖,𝑢𝑗
𝛽𝑒−𝛽(𝑡𝑖−𝑡𝑗) − ෍

𝑗=1

𝐾

𝜇𝑗𝑡

                            

                           − σ𝑗=1
𝐾 σ𝑡𝑖<𝑡 𝛼𝑢𝑖,𝑗[1 − 𝑒−𝛽(𝑡−𝑡𝑖)] 

• Parameters 𝜃 = 𝐴, 𝜇  are solved by maximum likelihood: max
𝜃

 ℓ(𝜃)

• Convex

21



Can be 
combined 

with regular 
time series

• Granger causal chain discovery for sepsis-associated derangements via multivariate Hawkes processes. Wei, Xie, Josef, Kamaleswaran. 

KDD 2023. 
• Causal graph discovery from self and mutually exciting time series. Wei, Xie, Josef, and Kamaleswaran. IEEE Selected Areas in Information 

Theory (JSAIT). Vol. 4, pp. 747-761. 2023.

Granger causality: Real-time sepsis prediction

• Add Directed Acyclic Graph (DAG) constraints to remove cycles
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Why need structural assumption

• Our first attempt on Granger causal graph discovery [2] returns cyclic 
patterns, and therefore less reasonable causal interpretations 

23

… 0     0     1     1     1 … 

… 0     1     1     1     1 … 

Ambiguity on the cause

Miss natural & important info

0: no event;
1: event



DAG-encouraging regularization

Length-1 cycles Length-2 cycles …

constant d 

Zheng, Xun, et al. "Dags with no tears: Continuous optimization for structure learning." Advances in neural information processing systems 31 (2018).

Motivation 
[Zheng et al. (2018)]

Graph adjacency matrix A 



…Linear relaxation 
(convex!)

[No penalty on length-1 cycles]

… …

DAG-encouraging regularization



[3] Wei, Song, et al. "Causal graph discovery from self and mutually exciting time series." IEEE Journal on Selected Areas in Information Theory (2023).

Proposed data-adaptive 
modification [3]

Step 1: Rough estimation

Step 2: Data-adaptive linear DAG-encouraging constraints

&

DAG-encouraging regularization



• DAG regularization removes suspicious links and helps parameter recovery

Simulation



• Resulting Causal DAG

Real-data experiment

0: no event;
1: event
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Why need uncertainty quantification?
• Causal inference: with statistical significance there exists an edge?

30

Example: Recovery neuronal networks 

Granger causality graph 𝐺 𝑈, 𝐸 , then 𝑗 → 𝑖 ∉ 𝐸, iff 𝛼𝑖𝑗 = 0.

”Uncertainty quantification for inferring Hawkes networks.” Wang, Xie, Cuozzo, Mak, X. NeurIPS 2020.



Asymptotic properties of MLE

• (Rathbun 1996)  MLE is consistent with asymptotically normal as 𝑇 → ∞

  𝑇 ෝ𝜶𝑖 − 𝜶𝑖 → 𝑁(0, 𝐼𝑖
∗−1

) 

• How good is asymptotic?

31

𝐼𝑖
∗ ∶ Fisher information

Red: asymptotic CI
Blue: Non-asymptotic CI



Can we do better than asymptotic?

• Challenge: 

   Continuous time non-i.i.d. data 

𝜆 𝑡 = 𝜇 𝑡 + influence from past

Standard Hoeffding or Bernstein type of concentration bound does not apply

• New approach: 

• Recent advances concentration inequality for continuous-time martingale 

• Develop more precise general sequential confidence set adaptive to data

32

“Time-uniform Chernoff bounds via nonnegative supermartingales”,
 Howard et al., Prob. Surveys 2020.



UQ for estimating ෝ𝜶𝒊𝒋 : Main idea

• Recall: Delta method (mean-value theorem)

𝑆𝑖 𝜶𝑖 − 𝑆𝑖 ෝ𝜶𝑖 = 𝐻𝑖(𝜶𝑖
′)(𝜶𝑖 − ෝ𝜶𝑖)

𝜶𝑖 − ෝ𝜶𝑖 ≈
1

𝑇
𝐼𝑖

∗−1
𝑆𝑖 𝜶𝑖

• Concentration bound for entries of 𝐼𝑖
∗−1

𝑆𝑖 𝜶𝑖 ∈ 𝑅𝐾  

33

= 0 → 𝑇𝐼𝑖
∗

score function is a continuous-time martingale



Sequential confidence set

Theorem (Uncertain sets for each 𝜶𝑖)

For any 𝜶𝑖, 𝑡 ∈ 0, 𝑇 , let መ𝐼𝑖 𝜶𝑖 , 𝑡  be estimator for the Fisher Information given data up to 
time 𝑡. Then 

𝐶𝑖,𝜀 = 𝜶𝑖 ∈ 𝑅𝐾: 𝑔𝑘 𝜶𝑖 ≤ ln 2𝐾/𝜀 , 𝑘 = 1, … , 2𝐾

is a confidence set for 𝜶𝑖  at level 1 − 𝜀.

Corollary (Width of confidence interval, asymptotically optimal) 

Width of 𝐶𝑖,𝜀  in the direction of 𝛼𝑖𝑗 → 2 2 ln 2𝐾/𝜀 𝜎𝑖𝑗
2 /𝑇.
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Intrinsic variance:

𝑔𝑘 𝜶𝑖 = න
0

𝑇

𝒛𝑘
𝑇 𝐻𝑡− , 𝜶𝑖 𝑑𝑆𝑖,𝑡 𝜶𝑖 − 𝑉𝑖 𝒛𝑘, 𝜶𝑖 , 𝒛𝑘 𝐻𝑡− , 𝜶𝑖 ∈ ±

2 ln(2𝐾/𝜀)

𝑇𝒆𝑗
𝑇 መ𝐼𝑖

−1 𝜶𝑖, 𝑡 𝒆𝑗

, 𝑗 = 1, … , 𝐾

𝑉𝑖 𝒛𝑘, 𝜶𝑖 = න
0

𝑇

𝜆𝑖(𝑡) exp 𝜆𝑖
−1 𝑡 𝑧𝑇𝜂𝑖(𝑡) − 𝑧𝑇𝜂𝑖 𝑡 − 𝜆𝑖(𝑡)) 𝑑𝑡



Results
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• Asymptotic CI is over-covering
• Non-asymptotic CI achieves targeted coverage and has narrower bandwidth 
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General influence kernel: 
Continuous space, non-stationary

• Events 𝑥𝑖 = 𝑡𝑖 , 𝑢𝑖 , 𝑢𝑖 ∈ 𝑀

𝜆 𝑥 = 𝜇 𝑥 + ෍

𝑥′:𝑡′<𝑡

𝐾 𝑥, 𝑥′

Can we build general model for 𝐾 𝑥′, 𝑥 ?

37

Network Bernoulli model

I Discrete time with N (small) intervals

I Observation over network (or discretized space) of K nodes

I d: “ memory” depth

I Map events into a Boolean vector ! t 2 Rd with entries

! tk 2 { 0, 1} , 1 k d

I ! tk = 1: at time t in location k an event happens
!

space

sp
a

ce

" #,%

"Neural Spectral Marked Point Processes."  Zhu, Wang, Cheng, and X. ICLR 2022.

“Spatio-temporal point processes with deep non-stationary kernels”. Dong, Cheng, X. ICLR 2023.



Kernel representation using deep neural networks

• Kernel representation (Mercer’s theorem)

𝑘 𝑥, 𝑥′ = ෍

𝑟=1

𝑅

𝜈𝑟𝜓𝑟 𝑥′ 𝜙𝑟(𝑥)
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Kernel representation using deep neural networks

• Kernel representation (Mercer’s theorem)

𝑘 𝑥, 𝑥′ = ෍

𝑟=1

𝑅

𝜈𝑟𝜓𝑟 𝑥′ 𝜙𝑟(𝑥)

• Feature maps represented by neural networks

39



Highly interpretable influence kernels

40

Red: city hall
Blue: church
Green: school

Data: 38,611 cases from March 15 to Sept. 30, 2020.
Exact location of case (residence) and date.



Hotspot prediction
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Police staffing and response time
• How does police staffing contribute to response time disparity and its 

causal impact on service quality?

• Treatment: staffing, Response: Response time

• Confounding factors: Weather, traffic, service priority….

43
Police staffing and fairness: Evidence from Atlanta Police. Zhou, Xie, Yu. Working paper. 2024.



Summary

• Granger causal graph estimation from spatio-temporal discrete events
• Structural assumptions, uncertainty quantification

• General: continuous space ”influence kernel”

• Other possible approaches
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